루덴스코드 Blog

CEA-014 아두이노 2개로 신호등 2개 연결하기

인터넷에서 "아두이노 신호등" 으로 검색해 보면 상당한 많은 자료들을 얻을 수 있습니다. 대부분 아두이노 우노에 LED 3개를 연결해서 신호등 하나를 만드는 내용입니다. 혹은 5개를 연결해서 차량용 신호등 하나와 보행자용 신호등하나를 만드는 것도 있습니다.

이 정도의 신호등은 지난시간까지 공부한 내용으로 여러분이 혼자서도 충분히 만들수 있습니다.

오늘 여러분에게 소개할 신호등은 아두이노 우노 2개를 사용해서 만들게 됩니다. 하나의 아두이노에서 LED 3개를 순차적으로 점멸시키는 것은 대부분의 신호등 프로그램과 비슷합니다. 그런데 거기에 두가지를 추가했습니다.




1. 시작시간을 초기화 하는 신호등 리셋 스위치

이 리셋스위치를 누르면 신호등의 신호는 처음으로 초기화됩니다. 초기화되서 맨 처음부터 정해진 순서대로 다시 순서대로 불이 들어옵니다.

2. 설정된 시간이 되면 작동하는 타이머

가변저항, 포텐셔미터의 값을 읽어서 1 에서 100 사이의 값으로 만듭니다. 그 값을 시간으로 계산합니다. 리셋스위치를 누른 후 정해진 시간이 지나면 다른 아두이노의 리셋스위치를 작동시킵니다.




신호등 1개는 너무 쉬워서 2개를 만들어서 연결해 보겠습니다.



그냥 막 연결하지 말고, "제대로" 연결해 봅시다. 보행자도 차를 탄 사람도 불편하지 않게 신호등 체계를 만들어 봅시다.



신호등간 신호를 주는 방식을 간단하게 고안해봤습니다. 하나의 신호등을 초기화하면 옆에 붙은 신호등이 일정한 시간간격을 두고 같이 초기화됩니다. 이 시간간격을 차량이동 예상 시간으로 만들어두면 됩니다.



3개의 아두이노를 꾸며봤습니다. 저항을 잘 보면 색띠가 있습니다. 색띠를 읽으면 저항값을 알 수 있습니다. 참고로 위에서부터 330, 330, 330, 10k, 1k 값을 가집니다. 맨 마지막 저항은 왜 들어갔을까요? 영상에서는 설명해주지 않습니다만 들어가지 않으면 안되는 저항입니다. 나중에 조금 더 아두이노를 공부한 다음에 이 저항에 대해서 설명할 기회가 되면 그때 설명하겠습니다.



Notepad++ 를 사용해서 편집합니다. 제가 주로 사용하는 텍스트에디터는 노트패드++ 입니다. 무료라서 쓰고 있지만 성능도 결코 왠만한 다른 에디터에 떨어지지 않습니다. 플러그인이 많고 다양해서 만족하면서 쓰고 있습니다. 



맨 위의 영상을 꼭 확인해보세요. 여기 전체 소스코드를 올립니다.



#define SIGNAL_RED  5

#define SIGNAL_YELLOW  6

#define SIGNAL_GREEN  7

#define TIMEPIN   A0

#define STARTSWITCH  10 // 스위치 입력

#define NEXTSIGNAL  11 // 다음 신호등 스위치 출력

#define BUTTON_ON   0

#define BUTTON_OFF  1


#define LED_RED_TIME  3000

#define LED_YELLOW_TIME  2000

#define LED_GREEN_TIME  3000



bool buttonState = 1;

bool lastButtonState = 1;

bool resetFlag = 0;

unsigned long timeValue = 0;

byte i=0;

unsigned long nowTime, oldTime;

  

void setup(){

  Serial.begin(9600);

  pinMode(SIGNAL_RED, OUTPUT);

  pinMode(SIGNAL_YELLOW, OUTPUT);

  pinMode(SIGNAL_GREEN, OUTPUT);

  pinMode(STARTSWITCH, INPUT);

  pinMode(NEXTSIGNAL, OUTPUT);

}


void loop(){

  buttonState = digitalRead(STARTSWITCH);


  if(buttonState != lastButtonState ) {

    lastButtonState = buttonState;

    delay(100);

i++;

if(i%2==1) {

signalTowerReset();

Serial.print("timeValue = ");

Serial.println(timeValue);

}

  }

  if(resetFlag) sendTimeSignal();

  ledSignalTower();

}




void signalTowerReset()

{

ledBlink3(); // 전체 신호등이 3번 깜박


resetFlag = 1;

    timeValue = map(analogRead(TIMEPIN), 0, 1023, 1, 100); // 신호등간 시간간격 [0~1023] => [0~99]

nowTime = millis();

oldTime = nowTime;

}



void sendTimeSignal(){

if((nowTime-oldTime)<timeValue*1000){

digitalWrite(NEXTSIGNAL, HIGH);

}

if(((nowTime-oldTime)>=timeValue*1000) && ((nowTime-oldTime)<(timeValue+1)*1000)) {

digitalWrite(NEXTSIGNAL, LOW);

}

if((nowTime-oldTime)>=(timeValue+1)*1000) {

digitalWrite(NEXTSIGNAL, HIGH);

resetFlag = 0;

}

}


void ledSignalTower(){

  nowTime = millis();

  if((nowTime-oldTime>=0)&&(nowTime-oldTime<LED_RED_TIME)) {

 digitalWrite(SIGNAL_RED, HIGH);

 digitalWrite(SIGNAL_YELLOW, HIGH);

 digitalWrite(SIGNAL_GREEN, LOW);

 }


  if((nowTime-oldTime>=LED_RED_TIME)&&(nowTime-oldTime<LED_RED_TIME+LED_YELLOW_TIME+LED_GREEN_TIME)) {

 digitalWrite(SIGNAL_RED, HIGH);

 digitalWrite(SIGNAL_GREEN, HIGH);

 for(byte i=0;i<6;i++ ){

   if((nowTime-oldTime>=LED_RED_TIME+LED_YELLOW_TIME*i/6)&&(nowTime-oldTime<LED_RED_TIME+LED_YELLOW_TIME*(i+1)/6))

 {  digitalWrite(SIGNAL_YELLOW, i%2); }  

 }

  }  

 

 

  if((nowTime-oldTime>LED_RED_TIME+LED_YELLOW_TIME)&&(nowTime-oldTime<LED_RED_TIME+LED_YELLOW_TIME+LED_GREEN_TIME)) {

 digitalWrite(SIGNAL_RED, LOW);

 digitalWrite(SIGNAL_YELLOW, HIGH);

 digitalWrite(SIGNAL_GREEN, HIGH);  

 }

  if(nowTime-oldTime>LED_RED_TIME+LED_YELLOW_TIME+LED_GREEN_TIME) oldTime = nowTime;

}


 

void ledBlink3(){

  for(int tempi=0;tempi<3;tempi++){

digitalWrite(SIGNAL_RED, 1);

digitalWrite(SIGNAL_YELLOW, 1);

digitalWrite(SIGNAL_GREEN, 1);

delay(200);

digitalWrite(SIGNAL_RED, 0);

digitalWrite(SIGNAL_YELLOW, 0);

digitalWrite(SIGNAL_GREEN, 0);

delay(200);

  }

}


Comment +0

[CEA-009~13] LED 3개를 스위치로 점멸시키기











지난 시간에 이어 3개의 LED 를 점멸시켜보겠습니다. 아두이노 우노에는 0 번에서 13번까지 총 13개의 디지털 입출력이 가능한 핀이 있습니다. 여기에 A0 에서 A5 까지 6개의 아날로그 입력 핀이 있습니다. 합치면 19개의 핀이 있고 모두 디지털입출력이 가능합니다.



3개의 LED 를 2, 3, 4번에 연결하고, 스위치는 9번에 연결합니다. 스위치를 연결할 때 주의항 내용이 있습니다. 플로팅(Floating) 상태에 두지 않기 위해서 풀업 또는 풀다운 상태를 만들어주어야 합니다.



하드웨어 연결이 끝났으면 소프트웨어를 만들어봅시다. 코딩의 시작입니다.



LED 는 초기에 켜져있다가 스위치를 누르면 LED 가 꺼지게 만들어봅시다. 



앞에서 만들어 본 코드를 조금씩 고쳐서 원하는 대로 LED 불빛이 바뀌게 해봅시다.



스위치가 눌려있는 동안 2, 3, 4 번에 연결된 LED 는 순서대로 켜지고 꺼지게 됩니다. 간단한 조건인 if 문을 사용할 수 있으면 됩니다. 변수를 하나 만들어 두고 반복할 때마다 1씩 증가하게 합니다. 1일대는 첫번째 LED를, 2일때는 두번째 LED를, 3일때는 세번째 LED를 켜고, 그 외의 다른 수(4)일때는 0이 되게 합니다.



위에서 만들었던 코드를 수정해봅시다.



% 연산은 나누고 남은 수, 나머지를 반환합니다. 그래서 i 를 계속 증가시킬때 i%3 은 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, ... 이렇게 세개 숫자를 반복해서 보내줍니다. 

여기에 버튼을 누를 때마다 LED의 빛을 하나씩 옆으로 이동하게 해봅시다. 위 소스를 실행시키면 약간 이상합니다. 그 부분을 찾아보세요.



앞에서 내준 숙제의 답입니다. 미리 보지 마시고 꼭 세번째 동영상을 보고 프로그램을 고쳐본 다음에 보세요.



답은 동영상을 확인하세요. 잘 보면 보입니다.

Comment +0

CEA-008 LED 1개 점멸하기 (하드웨어해석)


LED 를 1개 점멸시키는 회로를 구성하고 아두이노로 프로그램을 직접 짜 보았습니다. 이제 지난시간에 만들었던 회로에 대해서 조금 더 깊이있게 살펴보겠습니다. 초등학생이라면 이 부분은 건너뛰어도 됩니다. 시간은 오래 걸리지 않으니까 한번 보기는 하시구요, 잘 이해가 안되면 억지로 이해하려고 하지 마세요. LED 에 맞는 저항값을 어떻게 구하는지를 선생님께 물어보시면 선생님이 그 값을 계산해서 주실겁니다. 



영상에 나오는 사진을 몇장 첨부합니다.



LED 에 불을 켜는 프로그램과 회로를 구성했습니다. 구성한 회로가 어떤 것인지를 한번 살펴보겠습니다.



전기의 속도는 30만km/s 입니다. 1 초에 30만 km 를 간다는 뜻입니다. 빛과 속도가 같습니다. 하지만 전자의 이동 속도는 도체의 종류, 전압, 기타 환경에 따라서 많이 달라지는데 일반적으로 가정에서 사용하는 전선을 쓴다고 가정했을때 전자의 속도는 7~8mm/s 정도가 됩니다. 1 초에 7~8mm 밖에 움직이지 못합니다.  



전기가 흐를때 LED 를 통과하면서 전기에너지는 빛에너지로 바뀝니다. LED 는 전기에너지를 열에너지로 허비하는 것이 거의 없습니다. 백열등이나 형광등에서 LED 등으로 바뀌는 가장 큰 이유가 바로 효율때문입니다.



LED 는 2V 정도의 전압강하가 있습니다. 그리고 20mA 정도의 전류가 흐를때 최적의 빛을 냅니다. 물론 이 수치는 LED 마다 다릅니다. 일반적으로 20mA 는 LED 에게는 안전한 전류입니다. 이정도의 전류를 만들기 위해서 필요한 저항을 구하는 방법입니다.



태그 : CEA, 코딩교육, 아두이노, ARDUINO, UNO, 아두이노 강의, 키트, 부품, LED, BLINK, LED_BUILTIN, 전압강하

Comment +0

CEA-007 LED 1개 점멸하기 (소프트웨어)


LED 를 1개 점멸시키는 프로그램을 직접 짜 보겠습니다. 지난 시간에 하드웨어 구성을 마쳤습니다. 아두이노는 하드웨어와 소프트웨어를 동시에 다룰 수 있어야 합니다. 하드웨어가 어떻게 구성되었는지 모른다면 소프트웨어를 만들 수 없습니다.



영상에 나오는 사진을 몇장 첨부합니다.



LED 점멸하는 소프트웨어입니다. 기본 소스는 다음과 같습니다. 


void setup() {

  pinMode(12, OUTPUT);

}


void loop() {

  digitalWrite(12,0);

  delay(100);

  digitalWrite(12,1);

  delay(100);

}


12는 LED 가 연결된 아두이노의 핀번호 이고, 1 은 그 핀으로 전기가 흐른다(5V 출력)는 것, 0 은 그 핀으로 전기가 흐르지 않는다(0V 출력)는 것을 의미합니다.



예제에 나오는 LED_BUILTIN 은 13을 의미합니다. LED_BUILTIN 이 사용된 장소를 위 그림에 담았습니다.



태그 : CEA, 코딩교육, 아두이노, ARDUINO, UNO, 아두이노 강의, 키트, 부품, LED, BLINK, LED_BUILTIN

Comment +0

CEA-006 LED 1개 점멸하기 (하드웨어 구성)


LED 를 1개 점멸시키는 프로그램을 직접 짜 보겠습니다. 아직 정식으로 C 언어를 공부한 것이 아니라서 많은 부분을 설명하지는 못합니다. 하지만 우선은 그냥 따라서 해보는 것이 중요합니다.




해보면 생각보다 그렇게 어렵지도 복잡하지도 않습니다. 단지 아직 모를뿐이지요.


제대로 프로그래밍 언어를 공부하려면 시간도 걸리고 어려움이 있겠지만 아두이노를 가지고 사용하기 위해 프로그램을 익한다면 시간도 그렇고 오래걸리지는 않습니다. 당신이 조금만 똑똑하면 한주일이면 가능하고, 조금 명석한 편이 아니라면 3주일이면 됩니다. 


영상에 나오는 사진을 몇장 첨부합니다.



기본 예제에 나오는 LED Blink 프로그램을 살펴봅시다.



LED 를 사용할 때 극성에 주의하셔야 합니다. 내부를 잘 보면 굵은 쪽이 있습니다. 그 쪽에 - 또는 GND 쪽을 연결합니다.



실제 회로를 기호로 그린 그림입니다. LED 와 저항 330 또는 220 옴을 연결해주면 됩니다.



아두이노에서 LED 에 불을 켜 봅시다.


태그 : CEA, 코딩교육, 아두이노, arduino, 아두이노 강의, 키트, 부품

Comment +0